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NUMERICAL CALCULATION OF THE FLOW IN A REGION OF SPHERICAL 
BLUNTNESS AT SMALL REYNOLDS NUMBERS 

V. S. Gorislavskiy and A.I. Tolstykh 

ABSTRACT: Application of a method used by Tolstykh (1966) 
and Belotserkovskii (1966) to calculate supersonic flows of a 
viscous gas past surfaces (circular cylinders) to the calcula- 
tion of such flows past axisymmetric blunt bodies, at small 
Reynolds numbers. The aerodynamic characteristics of the 
flows are  obtained under the assumption that the equations of 
continuum mechanics retain their validity. The results ob- 
tained theoretically are compared with those obtained experi- 
mentally and with other approximate methods. 

References Ll, 2 1 examined the problem concerning the flow around two-dimen- 
sional bodies (in particular the circular cylinder) of a hypersonic viscous gas. 
Some results for the case of axisymmetric blunt bodies obtained by such methods 
are cited in this paper. Calculations were carried out to determine the aero- 
dynamic flow characteristics at small Reynolds numbers; it was assumed that 
the equations of continuum mechanics are applicable. In the case of sufficiently 
small Reynolds numbers, when the conditions of applicability of the given method 
may no longer apply, the obtained numerical results a re  naturally considered as 
formal. Approximate procedures for the investigation of viscous flow in a region 
of bluntness [3-51 are available; in these cases, when feasible, a comparison 
with theoretical results as well as with experimental data is made. 

1. We considered symmetrical hyper- 
sonic flow of a viscous, ideal gas around a 
blunt-body of revolution. A s  in 111 the initial 
system of equations is integrated within a 
region of finite width O< fi  < (SI, where s, n - 
are  the orthogonal coordinates connected with 
the surface of the body (s is taken from the 
critical point along the surface; n is taken 

This system differs from the Navier- Stokes 
equations by the absence of some terms of 
the order 0(1/R) and higher and has the form 

n 0 along the normal to the surface, Fig. 1). 

Figure 1. 

*Numbers in the margin indicate pagination in the foreign text. 
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Here, r(s, n) is the distance between the points (s, n) and the axis of sym- 
metry; p, v are  the s and n velocity components (Fig. l), referred to the velo- 
city of the undisturbed flow urn ; p-is the density, referred to the density of un- 
disturbed flow p,; p-is the pressure, referred to p 

referred to um2; p- is the viscosity referred to its value p*, when h = 1;  the variables 

s, n, r and curvature k are referred to the radius of curvature at the critical 
point Ro and the value l/Ro, respectively; R, aand y are  the Reynolds and 

Prandtl numbers and the density ratio, respectively; values j = 0 and j = 1 in the 
right-hand sides of Eq. (1.1) correspond to  the planar and axisymmetrical flows. 
It is assumed that M, > 1, where Ma, = w / @ -  1) ha-is the h!tach number for 

the undisturbed flow. The shape of the surface can be sufficiently arbitrary 
(only the function k, k(s) must be known). However, all concrete calculations were 
carried out only for the case of spherical bluntness. 

w 2; h i s  the enthalpy, 
0 0 0 0  

a 

Let us dwell on the basis for the selection of an initial system. Equations (1.1) 
are formally written with an accuracy not lower than 1/R; nevertheless, by means 
of an a posteriori analysis it is possible to demonstrate that in view of smooth 
change in functions along the surface of the body, the terms of Navier-Stokes equa- 
tions not entering into Eqs. (1.1) down to the small values of the Reynolds 
numbers, play a relatively insignificant role; on the other hand, as indicated 
below, their absence allows the obtaining of a singular solution of the prob- 
lem without making use of any information about the subsequent history of 
the flow. In addition to that, the presence in Eq. (1.1) of all convective terms 
and terms with higher derivatives with respect t~ ii frs= the ctam-plet~ system. 
ensure a sufficiently accurate description of the change in the flow parameters 
along the normal to the surface. Let u s  note, that terms with coefficient 7/3, 
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from the right-hand side of the third equation of the system (1.1) are of the 
order of 0 (l/R); nevertheless, as calculations have shown, a t  sufficiently small 
Reynolds numbers Qt < lo) ,  they begin to play a significant role. The "unortho- 
doxality" of these and several other terms has no particular meaning, since the 
solution of the system (I.. 1) is not connected with the construction of any asymp- 
totic expansions in the powers of the Reynolds number. 

Let us examine the boundary conditions of the problem. When n = n*, as in 
the planar case [l], relationships are utilized which were derived from the first 
approximation equations for the structure of the curvilinear shock-wave (subse- 
quent approximations are  of the order of 0 (1/R) and higher), as well as the re- 
lationship determining the line n = n* @). In the coordinate system (so, no), 
connected with this line (Fig. l), the boundary conditions have the form 

4 p dun + wnrw*m,  p'Un'+p = - - - 
_ _  

p d w t  
pw" = w,,, pwnwt  = -- R dnO 3 R dn' 

$--u* 4 Y  - d*n + u , . . ( h ~ +  p) f 3 ,R dn' 

dun 

dn 
= 0 .  - 

Here, 4 and % are  dimensionless so and no velocity components; subscript 
00 refers to values of parameters in the undisturbed flow. The last condition de- 
termines the position of line n = n* @) "behind" the shock-wave, which is con- 
venient for the construction of a solution in the region 0 <in< n* @) [the selec- 
tion of the boundary n* 6 )  is more practical rather than a matter of principle]. 
On the surface of the body fp = 0) the usual conditions of adhesion and the tem- 
perature conditions are  fulfilled 

/95 - 
u =o, U = O ,  an / a n =  0. 

On the axis of symmetry (s = 0) the obvious conditions a r e  fulfilled 

u -0, a u l a s  =o, a h i a s = o .  I (3 1 
In view of the fact that disturbances described by the system (1.1) may be 

propagated upstream, in order to secure a unique solution of the boundary 
problem, the conditions for s >'O are  also necessary; these conditions, as  in 
[l], follow from the existence of specific points in the differential equations ap- 
proximating (1.1) 

integral relations proposed in [6-71 is utilized; the left-hand sides of Eqs. (1.1) 
are written down in the divergent form; new functions are introduced: 

2. For the numerical integration of Eq. (1. l), scheme 1 of the method of 

( P = ~ u I ~ %  d , =  d v l d n ,  q =atz/an,l 
~. 

an equivalent system of first-order equations is integrated termwise from the 
surface to the limits nj@) of the region 
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into which the total domain 0 <n<n*(s) is subdivided. After the substitution of 
the integrands by interpolation polynomials with interpolation nodes on the 
boundaries of the regions, the integral expressions- a re  transformed into 
ordinary differential equations in terms of the desired functions in the nodes. 
The specific characteristic of the application of scheme 1 remains the same as  
the planar case. The transformation 

causes such an expansion of the region corresponding to the ?'boundary layer, 
and such a contraction of the region of "external flow, ' I  that the character of 
change of velocity u and of the expressions related to it become uniform 
within the entire region 0 G n < n*. Parameter a, entering into Eq. (1.1) and 
regulating the degree of expansion-of the "boundary layer, depends on the 
coordinate s and is one of the desired functions. After the transition to the 
variables s, t,  the region 0 < n < n* is transformed into a region of constant 
width 0 < t G 1, while the subdivision of the region of integration into n bands 
is brought about by lines 

l j ( € j .  Q) = j IN ( j  EO, f,, . . , N) 

To the rectilinear calculation network in the fictitious plane (s, t) 
corresponds a certain nonuniform subdivision in the physical plane (s, n). 
Moreover, the constant c determines the number of bands in the plane (s, t) 
corresponding to the boundary layer in the physical plane. The transformation 
of the type (2 .1)  permits calculations to be made in a wide range of Reynolds 
numbers; however, in this paper attention is directed only to regions of small 
Reynolds numbers, consequently, c is assumed to be equal to zero. 

In constructing the interpolation polynomials in t for the functions@,", p .  h, 
v, 9, rl, p and groups pu2, puv, p d h  + '/ZU' t 'Izu'),the character of their behavior near 
the surface is taken into account. The sum of the highest powers of all 
polynomials is taken to be one less than the corresponding sum of the usual 
approximation in the physical plane, This is related to the introduction of the 
parameter a as an unknown function. 

For the purpose of closing the system of integral equations, boundary 
conditions (1 .2)  are  used; these conditions are  written in the system of 
coordinates (s, n) and are  represented in the form of equations with the inde- 
pendent variable s. Noting that 

& I d s =  ( f i - k & ) t g T  

(where E = n*, T 

turbed flow), the approximating system is finally recorded in the form 
is the slope of the line n = n* in the direction of the undis- 

S(z, 6 )  dz / 8s = b (L. 5 )  (2.2) 

where S is the matrix, b is the vector of the right-hand side whose components 
are the 
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unknown functips u,, v i ,  p l ,  h0, h i ,  a, e, 7 ( I  = 1, . . . , W‘; the subscript refers to the 
number of bands takenfromthe body (uo = yo =IO). Pressure on the surface 
of the body does not enter into Eq. (2.2), and is determined from 

(P u)%o 

(pu9t -o  

r ~~ 

Po - - y-’  ho 

The system (2.2) is analogous to the corresponding system for the planar / 96 
case and is distinguished from it only by the presence of additional terms, 
mainly in the components of vector B; the fairly complex expressions for 
matrix S and vector components a re  not cited here. 

The boundary conditions for Eq. (2.2) when S =  0, follow from the conditions 
of symmetry (1.3). After the presentation of components of vector Z in the 
form of a series of even and odd powers of s of Eq. (2.2); these are con- 
verted into systems of algebraic equations with respect to the soefficient of 
expansion. These systems a re  shown to be unclosed; in the N-th approximation 
N parameters remain indeterminate. Unknown parameters a re  found from 
conditions of regularity in N specific points - as in the planar case [l]. In 
this manner we obtain the boundary problem for the system (2 .2);  its solution 
involved multiple integration of equations from the axis of symmetry with checking 
whether the conditions for the specific points have been fulfilled. Departure from 

the axis of symmetry was accomplished by using the 
first terms of the expansion in the neighborhood s = 0, 
with known parameters a(0) 6 (0) for N = 2 and a(O), 3 
€(O), vj(0) (j = 2 . .  . , N-1) for n > 2.  

’. -_ 

I 3. The calculations were carried aut ‘on a digital 
computer, using a program for an arbitrary number of 
approximations (N>, 2); the convergence of methods 
was not investigated and all data were obtained for N = 2. 
It was assumed that viscosity changes according to the 
law p M h 1/2. 

0.4 0.8 
Figure 2. 

f. 0 The following parameters of undisturbed 
flow were assumed M = 10, (T = 0.72; y = 7/5, 

in addition, for the purpose of comparison with 
the results of [4] the value v = 5/3 was employed 
in one case. Correspondence between the 
physical plane and plane (s, t) is evident from 
Fig. 2, where for different values of the num- 
b e r s  R, the boundaries of bands nj(s) are de- 
termined by lines t j  = j/N(j = l, 2). 

m 

0.5 

For the comparison of longitudinal ve- 
locity profiles in the fictitious and physical 
planes, functions u ( ” ( t )  and o( t ) ( t )  (~(0) a re  
plotted in Fig. 3 (the coefficient in the ex- 
pansion u = u(‘)s + O(s’), determines the character 

0 
0.5 u (“/u (‘I(S1 I. 0 

Figure 3. 
_ _  - 
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of velocity change in the greater part of the region of integration). In accor- 
dance with the purpose of transformation (2. l), function u(t) is almost linear, 
and within the range of Reynolds numbers under discussion, it has a universal 
character. 

Typical distribution o f  flow parameters along the axis of symmetry is 
shown in Fig. 4 ( y =  5/3, R =  20); dotted lines represent data of approximate 
theory [4] for the case of the heat-insulated surface, obtained for approxi- 
mately the same values of numbers R and u in(- = 19 J = 73 .  p = h'& 

~ ~~~ ~ 

In view of the difference in the width of the shock-layer (in the given work 
E fi 0.3 ,  in [4] E E 0.2,  if under E in the second case, we understand the distance 
on which the velocity v coincides with magnitude V( E )  in the first case), instead 
of coordinate n, E =  n/E was  used. 

- - ~ 

- 

Figure 4. Figure 5. 

Typical variation of flow parameters along the normal to the surface at 
different values s is illustrated in Fig. 5 (R = 10); all distributions along n as  
well as when s = 0 were obtained by means of interpolation polynomials. 

Calculations have shown, that with a decrease in the Reynolds number, 
velocity, pressure and enthalpy profiles undergo an insignificant change: the 
basic effect of the rarefaction within the medium is manifested by a consider- 
able increase in the width of the shock-layer. In Fig. 6 the change in pressure, 
enthalpy and friction on the surface of the sphere i s  represented in the form of 
functions po (8)/ho 0); Ho (s) and cj (s) [cj = lb (ua ~  /an), = 0 = o b .  Dotted lines 
traced in the same figure represent curves, corresponding to  the limiting cases 
R = 00 pressure on the sphere in the flow of an ideal gas M, = 10, y = 1.4 [8] and 
R = 0 coefficient of friction drag in free molecular flow cjo, diffusion reflection, 
coefficient of accomodation is equal to unity. 

Po @I) po (0) &*-&\little on the Reynolds number and does not mer greatly 

values of R begins to increase appreciably with an increase in the rarefac- 
tion of the medium. In the Fig. 7 we find the function P o @ )  /Pot = P(R) 

1 
I 

---_ Let - QS examine the function po 6); as is evident from Fig. 6 , ,  the ratio / 97 - 
from its value in the aow of an ideG gasi. iiUwei-ei-, AI-- -.-1..fi -n 161- o+' m m n l 1  bl1G V C C I U C  yu \VI UY YII*LLII 
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along with the experimental data [9,10] (cross-hatohed areas); here P w  
is the value of ~ p .10)  for an ideal gas. 
obtained in [4], for Y = %. 

Dotted lines represent the results 

Figure 6. Figure 7. 

Estimated values of P, fort0 <'l3 <soare proven to be somewhat smaller 
than 1, which corresponds to the experimentally established value [lo]; when 
8 < lothe theoretical curve is of the same shape as the experimental curve 
function; however, it passes slightly to the left of the experimental curve 
(it is possible that the Reynolds numbers in the given work and the measured 

ere not equivalent). In converting the Reynolds numbers 
7*-- - k, o V r f i  casCof-k-> '1. tk experime 
of Fig. 7 shift to the left, and agreement between the theoretical-ah 
experimental data appears to improve. Let us note that the calculated data 
well approximate the single-parameter curve passing through P when R=O 
in free molecular flow @/o)  = 1.64, when y = 7/5: 

P = 0.99 x (P(0) - 0.99 exp (-0.65R) 

Dependence of the coefficient of friction drag on the Reynolds numbers may 
be characterized by C = (c, / cjols-o; function C/R is illustrated in Fig. 7 by the 
curve c = 1.47R1/2 is also shown by dash-dotted line on the same figure, this 
curve was obtained for the boundary layer on blunt body for y = 7/5 from formulas 
used in p]. Let us  note, that if we take an interest in values of po(0), it is 
sufficient to select only rough values of initial parameters. For example, as 
was shown through numerical experiments, +, (0)  / a t ( 0 )  s 0.1 andt?po(O) / aa(0) X 0.001 
(1 Q A <Sol. This fact was utilized in constructing the theoretical curve P/(R) in 
Fig. 7 for R < 5 .  

/98 - 
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